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Bartonella species are responsible for chronic bacteremia in

domestic cats, which raises a question about the antiquity

of the relationship between Bartonella species and cats that

act as reservoirs for the organism. The sequencing of Bar-

tonella pap31 and groEL genes from the dental pulp of cats

dating from the 13th to 16th centuries identified the presence

of B. henselae genotype Houston; the observation of a unique

mutation in the results of PCR assays for Bartonella species

ruled out modern DNA contamination of the dental pulp

samples. We conclude that cats had bacteremia due to B.

henselae 800 years ago.

The genus Bartonella comprises facultative, intracellular, fas-

tidious bacilli of the a2 subclass of Proteobacteria. Common

features of Bartonella species include transmission by an ar-

thropod vector and survival within mammalian hosts that act

as reservoirs [1]. Four Bartonella species have been isolated

from domestic cats (i.e., Felis catus), specifically: Bartonella hen-

selae [2–8], Bartonella clarridgeiae [9–12], Bartonella koehlerae

[13], and, on one occasion, Bartonella bovis (formerly Barto-

nella weissii) [14]. B. henselae is transmitted to humans by

scratches or bites from cats or by bites from the cat flea

(Ctenocephalides felis) [15], and the organism can cause cat-

scratch disease (CSD), bacillary angiomatosis, hepatic peliosis,

and endocarditis [16]. Other felines, such as mountain lions

(Felis concolor), bobcats (Felis rufus), and Florida panthers, may

also be infected by B. henselae [17, 18]. Bartonella species are

responsible for chronic, asymptomatic bacteremia in kittens
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and adult cats, with a high prevalence of cases—ranging from

4% to 70%—occurring among apparently healthy cats [3, 4,

19]. B. henselae, which comprises 3 subspecies or genotypes—

the Houston [20], Marseille [21], and Berlin [22] genotypes—

that have been identified using multilocus sequence typing [23],

is distributed in cats and humans worldwide. Although the

Marseille and Houston genotypes have been recovered in hu-

mans, genotype Berlin has been identified only in a cat in

Germany [24]. Chronic, asymptomatic bacteremia is an ex-

ceptional disease among mammals, and Bartonella bacteremia

in cats is a unique model for the study of the antiquity of the

relationship between cats and Bartonella species and their co-

evolution [25]. The detection and analysis of Bartonella DNA

sequences that were recovered from premodern cat specimens

may help to answer these questions. The purpose of the present

study was to investigate the presence of Bartonella species DNA

in the dental pulp of French cats dated from the 13th to 16th

centuries.

Methods. We collected a total of 135 teeth from 19 do-

mestic cats from 7 burial sites in France (figure 1). Powdery

remnants of dental pulp were scraped off the teeth, and total

DNA was then extracted from the dental pulp, as reported

elsewhere [26]. All manipulations were performed separately

in different laboratories in which only non-Bartonella species

had been previously manipulated, to avoid any possibility of

modern molecular contamination of the premodern DNA sam-

ples. Every step in the experiment was performed in a separate

room, with the use of disposable equipment and newly pre-

pared reagents. To prevent carry-over of Bartonella species,

PCR-positive control samples were never used [27], and 3 con-

trol teeth were extracted from 3 contemporary cats after ver-

ification of the absence of Bartonella species DNA by PCR.

Also, 3 control assays for contamination, in which the DNA

sample was replaced with sterile water, were included for each

PCR assay. Amplifications were performed in a 25-mL mixture

that was prepared as described elsewhere [28]. Sequences of

the primers targeting the groEL gene were previously reported

elsewhere [29]. Sequences of the primers targeting the Pap31

gene were PAPF1EXT: 5′-GATTCTAGGAGTTGAAACCGA-3′

(positions 261–281; Bartonella henselae [GenBank accession

number AF308169]), PAPR1EXT: 5′-ACGCGAGTAGCACCA-

GACCA-3′ (positions 463–482), PAPF2INT: 5′-TGACAGAGA-

AGACGCAAAAA-3′ (positions 294–313), and PAPR2INT: 5′-

CCTTTAAAGCTAAACTATCTG-3′ (positions 437–457). PCR

included denaturation at 94�C for 3 min, followed by 43 cycles

of the following sequence: denaturation at 94�C for 30 s, primer
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Figure 1. Geographical distribution of premodern French cats used in a study of the antiquity of Bartonella henselae infection among domestic
cats. �, negative; +, positive.

annealing at 60�C (or at 58�C for HSPps primers) for 30 s, and

elongation at 68�C for 90 s. Nested PCR was directly performed

in a final volume of 42 mL under the same conditions. The

amplification was completed by holding the reaction mixture

at 68�C for 7 min to allow complete extension of the PCR

products. After purification (Milipore Multiscreen kit; Milipore

SAS) and cloning (pGEM-T Easy Vector System II kit; Pro-

mega), sequencing reactions were performed using the Big Dye

Terminator Cycle Sequencing V2.0 kit (Perkin-Elmer Biosys-

tem) and the 3100 Genetic Analyzer (Applied Biosystem). Se-

quences were aligned using the multisequence alignment Clus-

tal W, version 1.8, and were compared with sequences that were

available in GenBank.

Results. No amplification was obtained for the 3 PCR-neg-

ative control teeth or for the 3 contamination controls by use

of the PCR assays for both the pap31 and groEL genes. For

primers targeting the groEL gene, an amplicon of the expected

269-bp size was obtained from DNA extracts that had been

derived from the cats that were designated as cats 4, 6, and 13

(figure 1). Sequences derived from clones of cat 4 and cat 13

were identical to the sequence of the modern B. henselae ge-

notype Houston groEL gene (GenBank accession number AF

304023), whereas sequences obtained from 3 clones of cat 6

were identical to one another and presented 1 mutation in

comparison with the B. henselae genotype Houston groEL gene

sequence (ArG) in codon 356, resulting in translation from a

lysine to glutamic acid (GenBank accession number AY

5125555) (figure 2). For primers targeting the Pap31 gene, an

amplicon of the expected 164-bp size was obtained from DNA

extracts that had been derived from the same 3 cats. The se-
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Figure 2. Partial sequence of the Bartonella henselae groEL gene,
showing a mutation ArG, that was determined in cat 6.

quence of these cloned amplicons were identical to that of the

B. henselae phage 60457 strain SA-2 pap gene (GenBank

accession number AF 308168).

Discussion. We detected B. henselae groEL and pap31 gene

fragments in the dental pulp of 3 cats dating from the 13th,

14th, and 16th centuries. We believe that the finding of identical

sequences did not result from modern contamination of the

specimens, because of the extensive precautions that we took.

Specimens were manipulated in laboratories in which Barto-

nella species were never manipulated previously, as was recently

recommended [30, 31], and no amplification was obtained for

the 3 PCR-negative control teeth or for the contamination

controls. PCR-positive teeth were tested using 3 different sets

of primers that target 2 different regions, and the detection of

a unique mutation in the studied groEL sequence in 1 of the

specimens definitely ruled out contamination by modern Bar-

tonella DNA. This mutation was reproduced in 3 clones, which

suggests that it did not result from a misincorporation by the

Taq DNA polymerase but, rather, indicated a true mutation in

the premodern sequence.

The present report provides additional evidence of the use-

fulness of dental pulp for the detection of bloodborne micro-

organisms. Coxiella burnetii DNA and viable C. burnetii were

recovered from dental pulp of bacteremic guinea pigs that were

experimentally infected with C. burnetii [32, 33]. In humans,

the HIV genome has been detected in the dental pulp of patients

with AIDS [34, 35], and we previously found Yersinia pestis

DNA in the dental pulp of human remains dating from 2

historical plague pandemics [26–28]. The exploitation of dental

pulp is a practical tool in the study of bacteremic diseases,

because it allows the recovery of DNA from a naturally enclosed

cavity without the necessity of decalcification. It should be made

clear that dentine is not comparable to dental pulp, because of

the absence of a vascularization system in dentine; this explains

why dentine offers no advantage over dental pulp. We now

extend the use of dental pulp to the detection of premodern

pathogenic Bartonella species in their reservoir. The detection

of premodern pathogens in their reservoir and vector has sel-

dom been employed, apart from the detection of the Lyme

disease spirochete Borrelia burgdorferi in archived European

ticks that had been preserved in ethanol [36, 37] and in archived

rodents [38].

B. henselae genotype Houston was found in the 3 PCR-

positive cats, which suggests the continuous persistence of this

pathogen among French cats for at least 800 years. These data

suggest that epidemiological circumstances were present for the

occurrence of CSD within a medieval population in France,

because archaeological and historical data indicate that the cats

that we found to be PCR positive had lived in close contact

with people. Enlarged lymph nodes have been extensively re-

ported as scrofula in medieval literature and historical sources

[39]. It was believed that the French and English kings had the

divine power to cure scrofula by touching persons who ap-

peared to have the disease. Scrofula has been attributed to

tuberculosis, but some of the cases may, indeed, have been self-

limiting CSD, thus explaining the “cure” achieved by the royal

treatment. It is of interest that the formal practice of the cer-

emonial rite has been traced back to the 13th century in France

[39].

Molecular analyses have suggested that Bartonella species as-

sociated with indigenous rodents of the New World were phy-

logenetically distinct from Bartonella species that have been

recovered from Old World rodents, which suggests that species

that were separated by continental drift have evolved indepen-

dently from one another [40]. As for B. henselae, 3 genotypes

have been reported in Europe; only 2 of these genotypes—the

Houston and Marseille genotypes—have been detected world-

wide. In the New World, serological evidence indicates that

continent-restricted felines, including the bobcat (F. rufus) and

the mountain lion (F. concolor), were infected with an organism

that resembles B. henselae [17]. Large series of B. henselae in-

fections in humans have rarely been reported worldwide. Data

show a that a 76.5% majority of B. henselae infections in Aus-

tralia are due to the Houston genotype [41], whereas, in Europe,

the Houston and Marseille genotypes were identified at com-

parable levels in patients with B. henselae infection [21, 29].

Current distribution of B. henselae genotypes may result from

the divergent evolution of the feline-associated B. henselae

strains that followed continental drift. Additional transconti-

nental exchanges of genotypes may have occurred after the time

of Columbus. Here, we provide evidence that B. henselae ge-

notype Houston was present in France before the time of Co-

lumbus. This hypothesis warrants further studies, including

studies of premodern cat specimens that originated from the

New World, as well as from Egypt, where the cat is supposed

to have been domesticated first.
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